Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Genesis of the Third-Body at the Pad-Disc Interface: Case Study Of Sintered Metal Matrix Composite Lining Material

2009-10-11
2009-01-3053
During braking, third-body flows and layers govern friction mechanisms, which are fully responsible of the friction coefficient and wear. In the context of development of brake friction pairs, the involved tribological circuit has to be well understood and mastered. This paper concerns a sintered metal matrix composite used for TGV very high speed train. A series of low-energy stop brakings allows a detailed study of the third-body formation at the pad-disc contact. The pin surface is observed after each test. The evolution of the rubbing-area expansion all along the series is explained, and the friction behaviour, typical of the studied friction material, is related to the formation of a well-established third body at the pad-disc interface.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Consideration of Critical Cornering Control Characteristics via Driving Simulator that Imparts Full-range Drift Cornering Sensations

2009-10-06
2009-01-2922
A driving simulator capable of duplicating the critical sensations incurred during a spin, or when a driver is engaged in drift cornering, was constructed by Mitsubishi Heavy Industries, Ltd., and Hiromichi Nozaki of Kogakuin University. Specifically, the simulator allows independent movement along three degrees of freedom and is capable of exhibiting extreme yaw and lateral acceleration behaviors. Utilizing this simulator, the control characteristics of drift cornering have become better understood. For example, after a J-turn behavior experiment involving yaw angle velocity at the moment when the drivers attention transitions to resuming straight ahead driving, it is now understood that there are major changes in driver behavior in circumstances when simulator motions are turned off, when only lateral acceleration motion is applied, when only yaw motion is applied, and when combined motions (yaw + lateral acceleration) are applied.
Journal Article

Optimized Safety-Critical Embedded Display Development with OpenGL SC

2009-11-10
2009-01-3140
Historically, the majority of avionics display manufacturers have sought custom solutions to support the development of cockpit displays, head-up displays and other avionics on-board and ground displays, from specification through to target. This was however a decision borne out necessity rather than choice since the inherent wisdom of a ‘commercial-off-the-shelf’ (COTS) approach had been understood and demonstrated in other parallel domains for some time. So, with this in mind, why was a more costly custom approach selected?
Journal Article

Improving the Supply Chain by Sharing Intelligent Technical Data Packages

2009-11-10
2009-01-3137
For many suppliers in the aerospace value chain, business commences when the customer shares the Technical Data Package (TDP) that defines the detailed requirements for a specific part. To convert the customer TDP into the necessary internal documentation, suppliers must expend large amounts of effort. This generally involves passing along copies of the TDP to each functional discipline, which not only results in redundant and laborious work, but it introduces technical risk. There are now software tools available that enable an intelligent TDP that provides more value than just sharing a 3D CAD model. These tools electronically organize and integrate all elements of the TDP independent of the PLM software in use. The application of the intelligent TDP has enabled a 30% reduction in supply chain inefficiencies.
Journal Article

Virtual Multi-Cylinder Engine Transient Test System

2009-09-13
2009-24-0106
Researchers at the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a transient test system for single-cylinder engines that accurately replicates the dynamics of a multi-cylinder engine. The overall system can perform very rapid transients in excess of 10,000 rpm/second, and also replicates the rotational dynamics, intake gas dynamics, and heat transfer dynamics of a multi-cylinder engine. Testing results using this system accurately represent what would be found in the multi-cylinder engine counterpart. Therefore, engine developments can be refined to a much greater degree at lower cost, and these changes directly incorporated in the multi-cylinder engine with minimal modification. More importantly, various standardized emission tests such as the cold-start, FTP or ETC, can be run on this single-cylinder engine.
Journal Article

Low-Cost Pathway to Ultra Efficient City Car: Series Hydraulic Hybrid System with Optimized Supervisory Control

2009-09-13
2009-24-0065
A series hydraulic hybrid concept (SHHV) has been explored as a potential pathway to an ultra-efficient city vehicle. Intended markets would be congested metropolitan areas, particularly in developing countries. The target fuel economy was ~100 mpg or 2.4 l/100km in city driving. Such an ambitious target requires multiple measures, i.e. low mass, favorable aerodynamics and ultra-efficient powertrain. The series hydraulic hybrid powertrain has been designed and analyzed for the selected light and aerodynamic platform with the expectation that (i) series configuration will maximize opportunities for regeneration and optimization of engine operation, (ii) inherent high power density of hydraulic propulsion and storage components will yield small, low-cost components, and (iii) high efficiency and high power limits for accumulator charging/discharging will enable very effective regeneration.
Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Modeling liquid break-up through a kinetic approach

2009-09-13
2009-24-0023
Liquid atomisation is an important technical field for a wide range of engineering and industrial applications, particularly in the field of internal combustion engines. In these engines, in fact, the amount of pollutants at the engine-out interface is directly related to the quality of the combustion process, which is in turn determined by the quality of the air-fuel mixture preparation in Direct Injection (DI) engines. As a consequence numerical-experimental research is crucial to their development. Despite the significant amount of research that has been carried out on DI engines simulation, breakup modelling is still a challenge. In this paper we present a new numerical model for multiphase flows that could be particularly suited for liquid jet and droplet breakup simulation. The model is based on a Lattice Boltzmann (LB) solver coupled to a higher order finite difference treatment of the kinetic forces arising from non-ideal interactions (potential energy).
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol

2009-06-15
2009-01-1767
The heavy duty Particle Measurement Programme (PMP) inter-laboratory exercise consists of three parts: 1) the exploratory work to refine the measurement protocol, 2) the validation exercise where each lab will measure the emissions of a “golden” engine with two “golden” particle number systems simultaneously sampling from full and partial flow dilution systems, and 3) the round-robin where the emissions of a “reference” engine will be determined with a lab’s own particle number instrumentation. This paper presents the results of the exploratory work and describes the final protocol for testing in the validation exercise (and round robin) along with the necessary facility modifications required for compliance with the protocol. Key aspects of the protocol (e.g. filter material, flow rates at the full and partial flow systems, the pre-conditioning etc.) are explained and justified.
Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
X